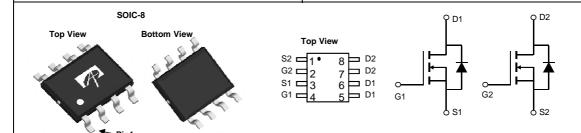


AO4800B

30V Dual N-Channel MOSFET

General Description


The AO4800B uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters.

Product Summary

 $\begin{array}{lll} V_{DS} & 30V \\ I_{D} \; (at \; V_{GS} \! = \! 10V) & 6.9A \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 10V) & < 27m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 4.5V) & < 32m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \! = \! 2.5V) & < 50m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

Absolute Maximum	Ratings T _A =25℃ unles	s otherwise noted		
Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V _{DS}	30	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain	T _A =25℃	I.	6.9	
Current	T _A =70℃	'D	5.8	А
Pulsed Drain Current	С	I _{DM}	30	
Avalanche Current C		I _{AS} , I _{AR}	14	А
Avalanche energy L=	0.1mH ^C	E _{AS} , E _{AR}	10	mJ
T _A =25℃		P _D	2	W
Power Dissipation ^B T _A =70℃			1.3	VV
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s	D	48	62.5	C/W			
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	74	90	€\M			
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	32	40	€\M			

Electrical Characteristics (T_J=25℃ unless otherwise noted)

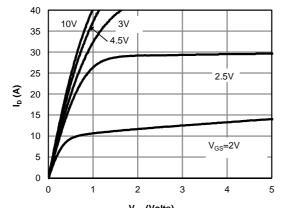
Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μА
D33			T _J =55℃			5	por .
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.7	1.1	1.5	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		30			Α
		V_{GS} =10V, I_D =6.9A			17.8	27	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J =125℃		28	40	11122
OS(ON)	Static Drain-Source On-Nesistance	V_{GS} =4.5V, I_D =6A			19	32	$m\Omega$
		V_{GS} =2.5V, I_D =5A			24	50	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =5A			33		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
I _S	Maximum Body-Diode Continuous Cur	rent				2.5	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance				630		pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=	:1MHz		75		pF
C _{rss}	Reverse Transfer Capacitance				50		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1	MHz	1.5	3	4.5	Ω
SWITCHI	NG PARAMETERS						
Q_g	Total Gate Charge				6	7	nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V,	I _D =6.9A		1.3		nC
Q_{gd}	Gate Drain Charge				1.8		nC
t _{D(on)}	Turn-On DelayTime				3		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V, I	$R_L=2.2\Omega$,		2.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			25		ns
t _f	Turn-Off Fall Time	<u></u>			4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =6.9A, dI/dt=100A/µ	ıs		8.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =6.9A, dI/dt=100A/μ	ıs		2.6		nC

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using \leqslant 10s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

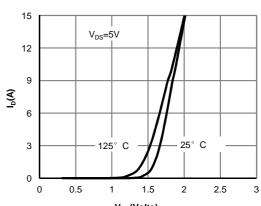
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

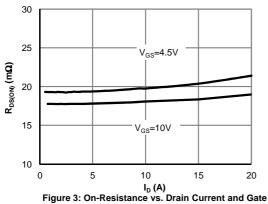
Rev 4: Dec 2011 Page 2 of 6 www.aosmd.com

initialT_{.I}=25° C.


D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.


F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.


TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

 V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

V_{GS}(Volts) Figure 2: Transfer Characteristics (Note E)

Voltage (Note E)

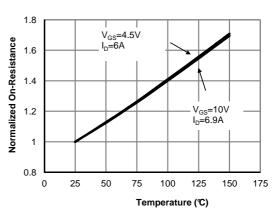
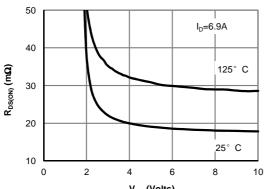
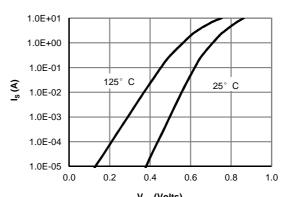
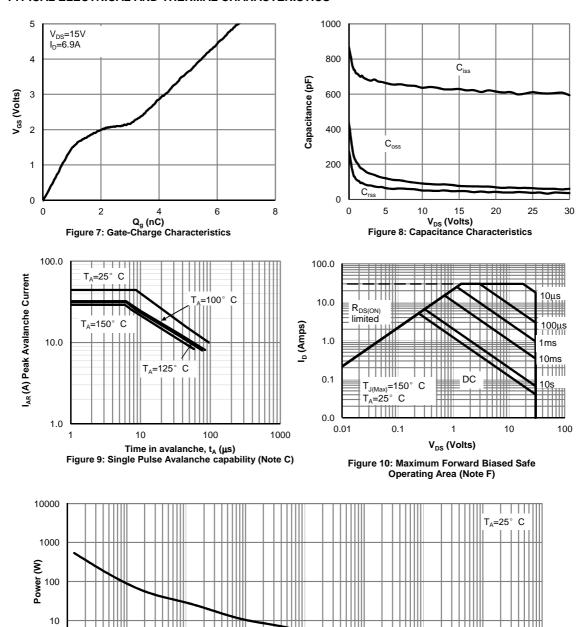




Figure 4: On-Resistance vs. Junction Temperature (Note E)

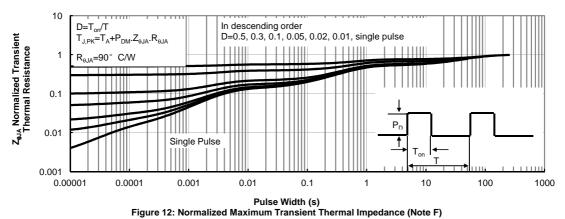
V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)


V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

1000

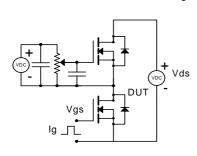
0.00001

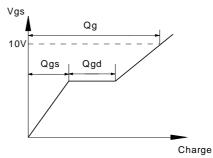
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



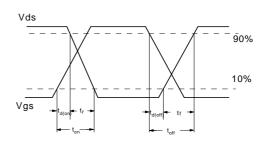
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

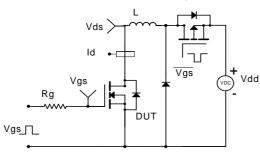
0.001

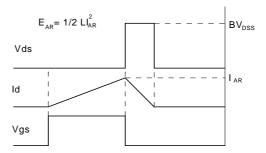


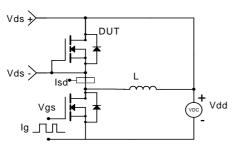

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

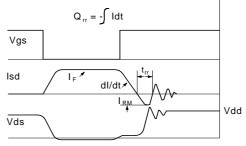



Gate Charge Test Circuit & Waveform

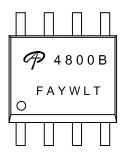



Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms



Document No.	PD-00655
Version	D
Title	AO4800B Marking Description

SO8 PACKAGE MARKING DESCRIPTION

Green product

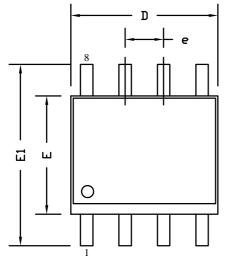
NOTE:

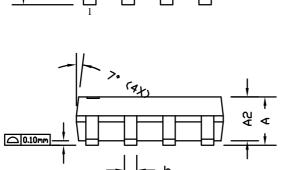
LOGO - AOS Logo

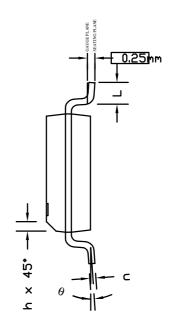
4800B - Part number code

F - Fab code

A - Assembly location code


Y - Year code W - Week code L&T - Assembly lot code


PART NO.	DESCRIPTION	CODE
AO4800B	Green product	4800B
AO4800BL	Green product	4800B



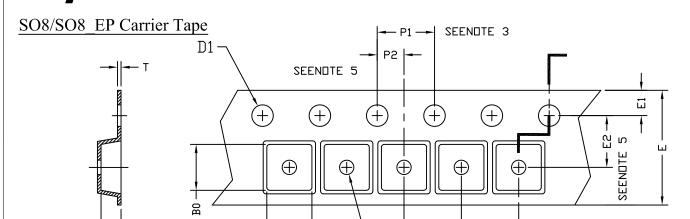
Document No.	PO-00004
Version	1

SO8 PACKAGE OUTLINE

RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIC	NS IN MILL	IMETERS	DIME	NSIONS IN IN	CHES
STWIDOLS	MIN	NOM	MAX	MIN	NOM	MAX
A	1.35	1.65	1.75	0.053	0.065	0.069
A1	0.10	0.15	0.25	0.004	0.006	0.010
A2	1.25	1.50	1.65	0.049	0.059	0.065
b	0.31	0.41	0.51	0.012	0.016	0.020
С	0.17	0.20	0.25	0.007	0.008	0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	3.80	3.90	4.00	0.150	0.154	0.157
e	1	.27 BSC		(0.050 BSC	,
E1	5.80	6.00	6.20	0.228	0.236	0.244
h	0.25	0.30	0.50	0.010	0.012	0.020
L	0.40	0.69	1.27	0.016	0.027	0.050
θ	0°	4°	8°	0°	4°	8°

NOTE

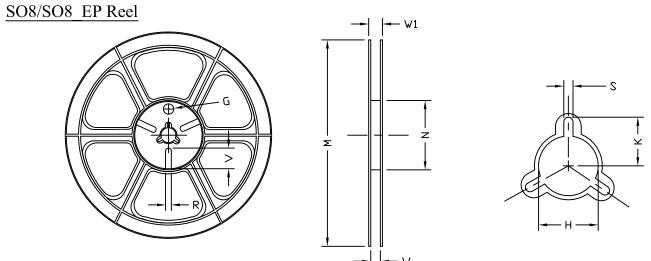

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

ALPHA & OME OF SEMICONDUCTOR, LTD.

ALPHA & OMEGA SO8/SO8_EP Tape and Reel Data

FEEDING DIRECTION



UNIT: MM

K0 -


PACKAGE	Α0	В0	К0	D0	D1	Ε	E1	E2	P0	P1	P2	Т
SD-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05

DO

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	W	W1	Ι	К	S	G	R	V
12 mm	ø330	ø330.00 ±0.50	ø97.00 ±0.10	13.00 ±0.30	17.40 ±1.00	ø13.00 +0.50 -0.20	10.60	2.00 ±0.50			

AOS Semiconductor Product Reliability Report

AO4800B/AO4800BL, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

Oct 15, 2007

This AOS product reliability report summarizes the qualification result for AO4800B. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4800B passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AO4800B uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters. Standard Product AO4800B is Pb-free (meets ROHS & Sony 259 specifications).

Absolute Maximum	Ratings T _A	=25°C unless o	otherwise noted	
Parameter	Parameter		Maximum	Units
Drain-Source Voltage)	V_{DS}	30	V
Gate-Source Voltage		V_{GS}	±12	V
Continuous Drain	T _A =25°C		6.9	
Current	T _A =70°C	I _D	5.8	Α
Pulsed Drain Current		I _{DM}	40	
	T _A =25°C	- P _D	1.9	W
Power Dissipation T _A =70°C		FD	1.2	VV
Junction and Storage				
Temperature Range		T_J , T_{STG}	-55 to 150	°C

Thermal Characteristics					
Parameter	Symbol	Тур	Max	Units	
Maximum Junction-to- Ambient	T ≤ 10s	Б	55	62.5	°C/W
Maximum Junction-to- Ambient	Steady- State	$R_{ heta JA}$	90	110	°C/W
Maximum Junction-to-Lead	Steady- State	$R_{\scriptscriptstyle{ hetaJL}}$	40	48	°C/W

II. Die / Package Information:

AO4800BL (Green Compound)

Process Standard sub-micron Standard sub-micron

Low voltage N channel process Low voltage N channel process

Package Type8 leads SOIC8 leads SOICLead FrameCopper with Ag spotCopper with Ag spot

Die Attach Ag epoxy Ag epoxy

Bond wireS: Cu 2mils; G: Au 1.3milsS: Cu 2mils; G: Au 1.3milsMold MaterialEpoxy resin with silica fillerEpoxy resin with silica filler

Filler % (Spherical/Flake)90/10100/0Flammability RatingUL-94 V-0UL-94 V-0Backside MetallizationTi / Ni / AgTi / Ni / AgMoisture LevelUp to Level 1 *Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO4800B (Standard) & AO4800BL (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow@260°c	0hr	Standard: 7 lots	770 pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	1 lot (Note A*)	82 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	1 lot (Note A*)	82 pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 3 lots (Note B**)	165 pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7psi, 100%RH	96 hrs	Standard: 4 lots (Note B**)	220 pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	Standard: 7 lots (Note B**)	385 pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AO4800B (Standard) & AO4800BL (Green) Continues

DPA	Internal Vision	NA	5	5	0
	Cross-section		5	5	
	X-ray		5	5	
CSAM		NA	5	5	0
Bond Integrity	Room Temp	0hr	40	40 wires	0
•	150°C bake	250hr	40	40 wires	
	150°C bake	500hr	40	40 wires	
Solderability	245°C	5 sec	15	15 leads	0
Die shear	150°C	0hr	10	10	0

Note A: The HTGB and HTRB reliability data presents total of available AO4800B and AO4800BL burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AO4800B and AO4800BL comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion):128 MTTF = 891years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4800B). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 / [2 \text{ (N) (H) (Af)}] = 1.83 \times 10^9 / [2 \text{ (164) (168) (258)}] = 128$ **MTTF** = $10^9 / \text{FIT} = 7.81 \times 10^6 \text{hrs} = 891 \text{years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval **N** = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea / k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C			
Af	258	87	32	13	5.64	2.59	1			

Tis = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

 \mathbf{k} = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual. Guaranteed Outgoing Defect Rate: **< 25 ppm** Quality Sample Plan: conform to **Mil-Std-105D**