

DP4T Antenna Cross Switch with MIPI 2.1

Features

awinic

- Low insertion loss: 1.0 dB typical @ 5.0 GHz
- High isolation: 30 dB typical @ 5.0 GHz
- High power handling capability of up to 38 dBm
- Broadband frequency range: 0.1 to 5 GHz
- MIPI RFFE V2.1 interface
- Single VIO supply
- No DC blocking capacitors in typical application
- Small WBQFN 2.0mm x 2.0mm x 0.55 mm -16L package

Applications

- Antenna routing switch for cellular devices
- Cellular Modems , Tablets and USB Devices
- GSM/CDMA/WCDMA/LTE and NR including n77, n78, n79 bands

General Description

The AW12024T is a dual-pole four-throw switch with low insertion loss, high Isolation and high power capability. It is suitable for multi-mode LTE and 5G NR quadruple antenna applications.

The AW12024T is perfectly compatible with MIPI RFFE V2.1 control interface operating in 1.65 to 1.95V voltage range. It is provided in a compact 2.0mm x 2.0mm x 0.55mm size, 16-pin WBQFN package.

Typical Application Circuit

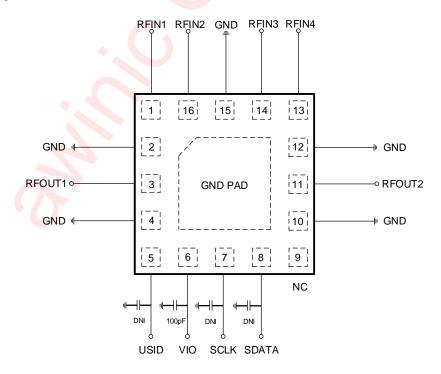


Figure 1 Typical Application Circuit of AW12024TQNR

1

Pin Configuration And Top Mark

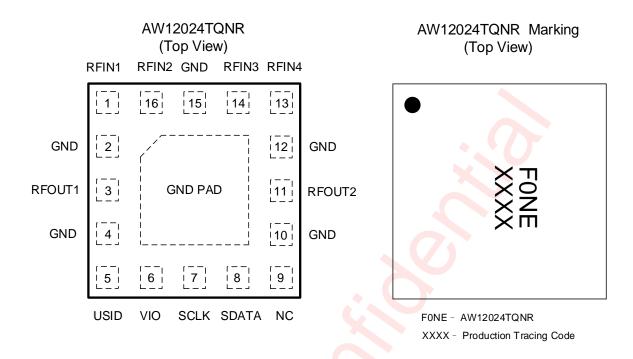


Figure 2 Pin Configuration and Top Mark

Pin Definition

No.	NAME	DESCRIPTION
1	RFIN1	RF input port 1
2	GND	Ground
3	RFOUT1	RF output port 1
4	GND	Ground
5	USID	MIPI USID select port
6	VIO	Supply voltage for MIPI
7	SCLK	MIPI clock
8	SDATA	MIPI data input/output
9	NC	NC
10	GND	Ground
11	RFOUT2	RF output port 2

AW12024TQNR

Aug. 2022 V1.2

12	GND	Ground	
13	RFIN4	RF input port 4	
14	RFIN3	RF input port 3	
15	GND	Ground	
16	RFIN2	RF input port 2	
17	GND	Ground	

Functional Block Diagram

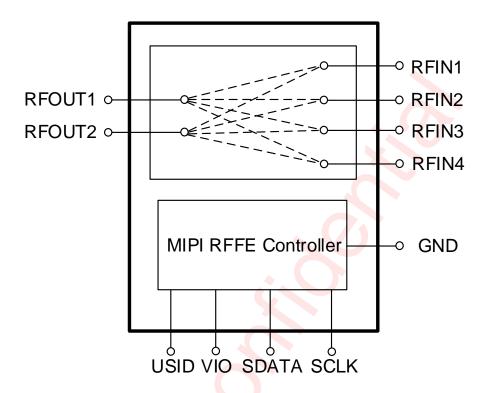


Figure 3 Functional Block Diagram

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmenta I Information	Delivery Form
AW12024TQNR	-40°C∼85°C	WBQFN 2.0mm x 2.0mm x 0.55 mm -16L	FONE	MSL1	ROHS+HF	4500 units/ Tape and Reel

Absolute Maximum Ratings (NOTE 1)

awinic

PARAMETERS	RANGE
Supply Voltage VIO for MIPI	-0.3V to 2.5V
Interface Control Voltage Range SDATA, SCLK	-0.3V to 2.5V
RF input power	38.5dBm
Operating Free-air Temperature Range	-40°C to 85°C
Storage temperature T _{STG}	-65°C to 150°C
Lead temperature (soldering 10 seconds)	260°C
ESD	
HBM(Human Body Model)(NOTE 2)	±1000V
CDM (Charged Device Model) (NOTE 3)	±500V

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: ESDA/JEDEC JS-001-2017.

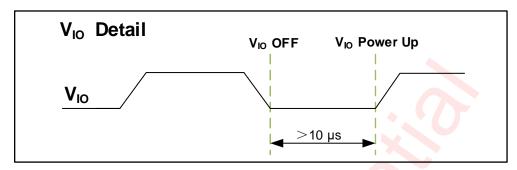
NOTE3: All pins. Test Condition: ESDA/JEDEC JS-002-2018.

V_{IO}=1.8V, P_{IN}=0dBm, VSWR=1:1,Temp=+25°C. (unless otherwise noted)

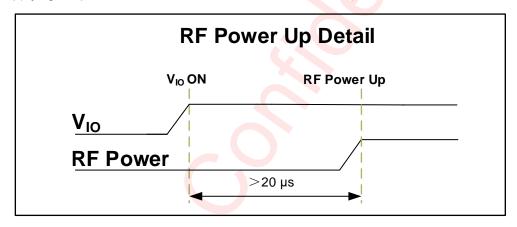
	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
DC Specifi	cations				•	
V _{IO}	Supply voltage for MIPI		1.65	1.8	1.95	V
	V. Control Control	Active Mode		40	110	μА
l _{IO}	V _{IO} Supply Current	Low Power Mode		2	9	μΑ
V _{СТL_} н	SDATA,SCLK Control Voltage High	Must not exceed V _{IO} voltage	0.8* V _{IO}	VIO	1.95	V
VстL_L	SDATA,SCLK Control Voltage Low	Must not exceed V _{IO} voltage	0	0	0.3*V _{IO}	V
Tsw	Time to switch between RF states	50% last SCLK falling edge to 90% RF signal		1.6	3	μs
RF Specific	cations					
		617-960MHz		0.40	0.61	dB
	Insertion Loss (RFOUT1/2 to RFIN1/2/3/4)	1425-2200MHz		0.45	0.74	dB
IL		2300-2690MHz		0.50	1.21	dB
IL .		3300-3800MHz		0.75	1.44	dB
	*	3800-5000MHz		1.00	1.98	dB
		617-960MHz	15	25		dB
	Return Loss(All RFIN/RFOUT Ports)	1425-2200MHz	13	22		dB
RL		2300-2690MHz	12	20		dB
	. 5.10,	3300-3800MHz	9	16		dB
		3800-5000MHz	6	10		dB
		617-960MHz	30	49		dB
		1425-2200MHz	24	41		dB
	RFOUT to RFOUT Ports	2300-2690MHz	21	35		dB
ISO ON-ON		3300-3800MHz	20	33		dB
		3800-5000MHz	18	30		dB
		617-960MHz	30	49		dB
		1425-2200MHz	24	41		dB
	RFIN to RFIN Ports	2300-2690MHz	21	40		dB
		3300-3800MHz	20	35		dB
		3800-5000MHz	19	30		dB

るWinic 上海艾为电子技术股份有限公司 shanghai awinic technology co., ltd.

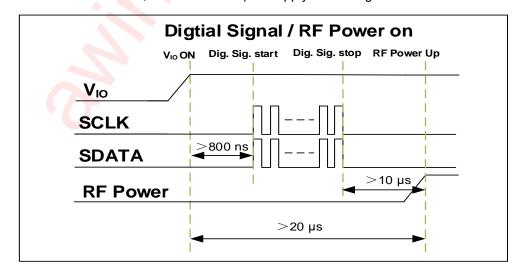
AW12024TQNR


Aug. 2022 V1.2

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
		617-960MHz	30	49		dB
		1425-2200MHz	25	41		dB
	DEIN to DEOLIT Dotto	2300-2690MHz	23	35		dB
	RFIN to RFOUT Ports	3300-3800MHz	22	33		dB
		3800-5000MHz	20	34		dB
		617-960MHz	30	49		dB
		1425-2200MHz	24	42		dB
	RFOUT to RFOUT ports	2300-2690MHz	21	41		dB
ISO ON-OFF		3300-3800MHz	20	38		dB
		3800-5000MHz	18	36		dB
		617-960MHz	31	50		dB
		1425-2200MHz	26	49		dB
	RFIN to RFIN Ports	2300-2690MHz	23	47		dB
		3300-3800MHz	21	40		dB
		3800-5000MHz	20	35		dB
		617-960MHz	31	50		dB
		142 <mark>5</mark> -2200MHz	26	48		dB
	RFIN to RFOUT Ports	2300-2690MHz	23	45		dB
		3300-3800MHz	21	41		dB
		3800-5000MHz	21	35		dB
H2	Second Harmonics	Freq=900MHz, P _{IN} =+35dBm,CW		-60	-50	dBm
H3	Third Harmonics	Freq=900MHz, P _{IN} =+35dBm,CW		-58	-50	dBm
H2	Second Harmonics	Freq=1900MHz, P _{IN} =+35dBm,CW		-58	-50	dBm
H3	Third Harmonics	Freq=1900MHz, P _{IN} =+35dBm,CW		-48	-45	dBm
P _{0.1dB}	0.1dB Compression Point	All RFIN/RFOUT Ports		38		dBm


Power ON and OFF Sequence

1. Once V_{IO} is powered down to 0 V, wait at least 10 μ s to reapply power to V_{IO} .


Digital Supply Detail Figure 4

2. Before applying RF power , V_{IO} must be turned on for at least 20 μ s.

RF Power-Up Detail Figure 5

3. Before sending SDATA/SCLK, Vio must be applied for at least 800 ns to ensure correct data transmission. And after the RFFE bus is idle, wait at least 10 µs to apply the RF signal.

Digital Signal / RF Power-On Detail Figure 6

awinic

Aug. 2022 V1.2

4. There shall be no RFFE bus operations during RF Signal active to protect the device. So RF input signal shall be applied after RFFE bus operations being finished and be removed before RFFE bus operations being started.

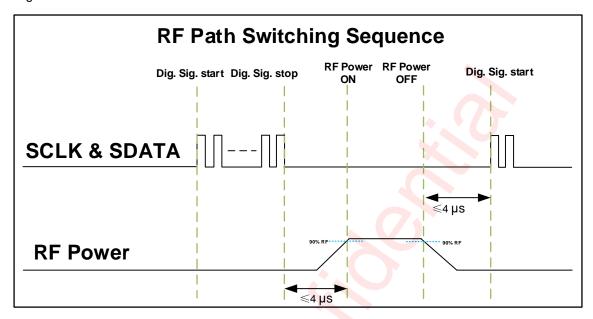


Figure 7 RF Path Switching Sequence

5. If "Lower Power Mode" is used, there must be a 10 μs delay before exiting "Lower Power Mode".

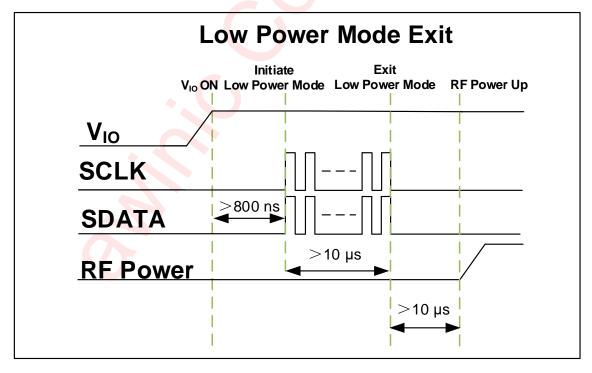
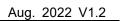



Figure 8 Lower Power Mode Exit Timing

MIPI RFFE Specification

The MIPI RFFE interface is working in systems following the 'MIPI Alliance Specification for RF Front-End Control Interface version 2.1.

TABLE1: MIPI FEATURES

Feature	Supported	Comment
MIPI RFFE 2.1 standard	Yes	. (/)-
Register 0 write command sequence	Yes	
Register read and write command sequence	Yes	
Extended register read and write command sequence	Yes	
Masked write command sequence	Yes	Indicated as MW in below register mapping tables
Support for standard frequency range operations for SCLK	Yes	Up to 26 MHz for read and write
Support for extended frequency range operations for SCLK	Yes	Up to 52 MHz for write
Half speed read	Yes	
Full speed read Full speed write	Yes	
Longer Reach RFFE Bus Length Feature	Yes	
Programmable driver strength	Yes	
Programmable Group SID	Yes	
Programmable USID	Yes	Support for three registers write and extended write sequences
Trigger functionality	Yes	
Extended Triggers and Trigger Masks	Yes	
Broadcast / GSID write to PM TRIG register	Yes	
Reset	Yes	Via VIO, PM TRIG or software register
Status / error sum register	Yes	
Extended product ID register	Yes	
Revision ID register	Yes	
Group SID register	Yes	
USID select pin	Yes	External pin for changing USID: USID select pin = 0→0x06 USID select pin = 1→0x07

TABLE2: Start-up Behavior

Feature	State	Comment			
Power status Low power mode		Low power mode after start-up			
Trigger function	Enable	Enable after start-up. Programmable via register			

MIPI Read and Write Timing

Register 0 write:

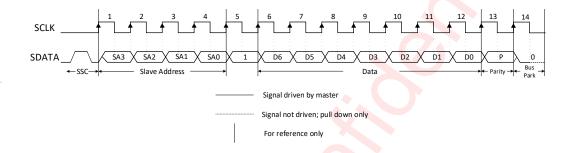


Figure 9 Register 0 write command sequence

Register write:

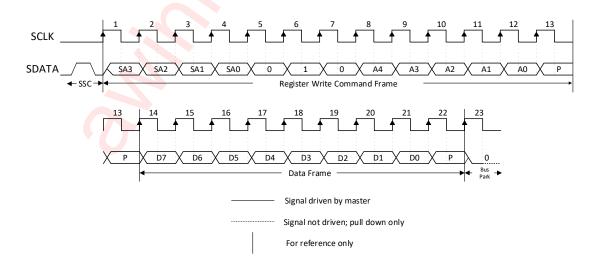


Figure 10 Register write command sequence

Register read:

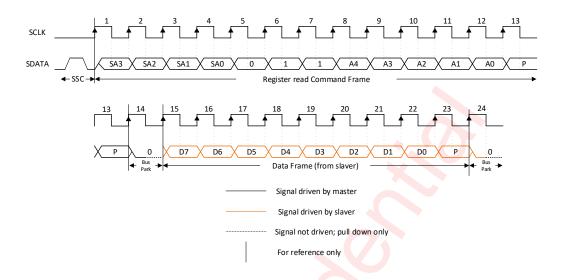


Figure 11 Register read command sequence

Extended Register write:

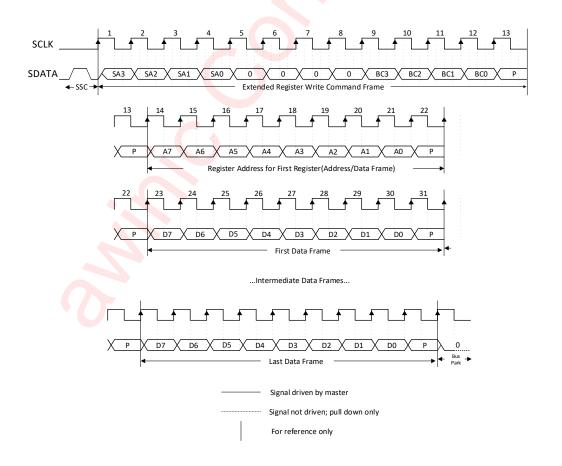


Figure 12 Extended Register write command sequence

Extended Register read:

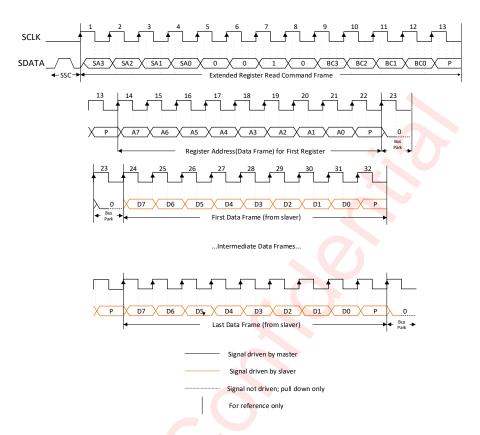


Figure 13 Extended Register read command sequence

Masked write:

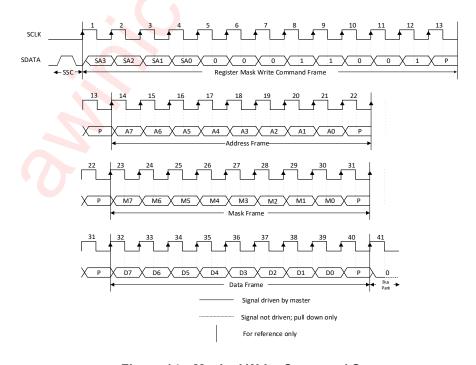


Figure 14 Masked Write Command Sequence

Register Configuration

Register Detailed Description

REGISTER 0x0000 : Output_Cross_CTRL

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:1	SPARE	Reserved for future use	0x00	No	0	RW MW
0	Output_Cross	Enable DP4T output Switch to cross mode, 0x0: DP4T Direct operating mode 0x1: DP4T output cross operating mode	0x0	No	0-11	RW MW
Note: See Truth Table for example of operation						

REGISTER 0x0001 : SW_CTRL

Bit(s)	Field Name	Description		Reset	B/G	Trig	R/W	
7:6	SPARE	Reserved for future use		0x0	No	0	RW MW	
5:4	SW_Connect_Ind[1:0]	Indicate switch connect sequence from bit 0 to bit 3 00: one port connect to output1, ouput2 isolation 01: Lower bit in bit0 to bit3 connect to output1 10: Higher bit in bit0 to bit3 connect to output1 11: one port connect to output2, ouput1 isolation		0x0	No	0-11	RW MW	
3:0	Input_Sel[3:0]	Input Ports Select Enables DP4T input port. Each bit is a dedicated input port. 0000: Isolation Bit0 <->input1 Bit1 <->input2 Bit2 <->input3 Bit3 <->input4	0001: Input 1 Select 0010: Input 2 Select 0100: Input 3 Select 1000: Input 4 Select etc	0x0	No	0-11	RW MW	
	Note: See Truth Table for example of operation							

REGISTER 0x001A: RFFE_STATUS

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	UDR_RST	Setting this bit initiates a software reset	0	No	No	W

AW12024TQNR

Aug. 2022 V1.2

		Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.				
6	CMD_FR_P_ERR	Command Frame received with a parity error	0	No	No	R/W
5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W
	Note: Reading this register resets this register.					

REGISTER 0x001B: GSID0-1

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	GSID0[3:0]	Group Slave ID0	0x0	No	No	R/W
3:0	GSID1[3:0]	Group Slave ID1	0x0	No	No	R/W

REGISTER 0x001C: PM_TRIG

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	PWR_MODE[1]	0: Normal Operation	1	B/G	No	R/W
		1: Low Power - Antenna in isolation				
6	PWR_MODE[0]	0: ACTIVE	0	B/G	No	R/W
		1: STARTUP - Reset all registers to default settings				
		Note: Setting PWR_MODE to STARTUP is identical to a hardware reset initiated by the VIO signal.				
5:3	TriggerMask[2:0]	Setting bit TriggerMask[N] disables Trigger[N] TriggerMask[N] updates before Trigger[N] is processed	0b000	No	No	R/W
		Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then all associated triggers must be disabled to allow direct writes to the associated register.				
2:0	Trigger[2:0]	Setting bit Trigger[N] loads Trigger[N]'s associated registers	0b000	B/G	No	W
		Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that				

るWinic 上海艾汋电子技术股份有限公司 shanghai awinic technology co., Itd.

AW12024TQNR

Aug. 2022 V1.2

register's shadow. Setting the Trigger[N] bit loads data from shadow. All triggers are processed immediately and simultaneously and then cleared. Trigger[0], [1], and [2] will always read as 0.		

REGISTER 0x001D : PRODUCT_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	PROD_ID[7:0]	Lower eight bits of Product Number Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x06	No	No	R

REGISTER 0x001E: MANUFACTURER_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	MFG_ID[7:0]	Lower eight bits of MIPI Manufacturer ID Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.	0x49	No	No	R

REGISTER 0x001F: MAN_USID

Bit(s)	Field Name	Description		Reset	B/G	Trig	R/W
7:4	MFG_ID[11:8]	Upper four bits of MIPI Ma Note: This is a read-only r of the special programmin USID, a write command so this register, but does not for details.	register. However, as part g sequence for writing equence is performed on	0x0 0	No	No	R
3:0	USID[3:0]		Programmable Unique Slave ID The default value at reset is selected via pin SID0		No	No	R/W
	6	USID set pin	USID				
		0	0x06				
		1	0x07				
	Note: USID is only writeable using a special programming sequence. See MIPI 6.6.2 for details.						

REGISTER 0x0020 : EXT_PRODUCT_ID

AW12024TQNR

Aug. 2022 V1.2

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	PROD_ID[15:8]	Upper eight bits of Product Number	0x00	No	No	R
		Note: These are read-only registers. However, as part of the special programming sequence for writing USID, a write command sequence is performed on one or both registers, but does not update them. See MIPI 6.6.2 for details.				

REGISTER 0x0021 : REVISION_ID

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:6	MAJOR_REV[1:0]	Major Revisions - all layer	0b00	No	No	R
5:4	MINOR_REV[1:0]	Minor Revisions - metal only	0b00	No	No	R
3:0	MISC_REV[3:0]	Misc Revisions - mask variants	0b0001	No	No	R
Note: The REVISION_ID register contains this product's revision number which is set by Awinic according to manufacture date. The value may change throughout the product life cycle.						

REGISTER 0x0022 : GSID2-3

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:4	GSID2[3:0]	Group Slave ID2	0x0	No	No	R/W
3:0	GSID3[3:0]	Group Slave ID3	0x0	No	No	R/W

REGISTER 0x0023 : UDR_RST

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	UDR_RST	Setting this bit initiates a software reset Note: On software reset, this register and all User Defined registers (UDRs) are reset. This bit will always read as 0.	0	B/G	No	W
6:0	RESERVED		0x00	No	No	R

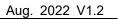
REGISTER 0x0024 : ERR_SUM

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7	SPARE	Reserved for future use	0	No	No	R/W
6	CMD_FR_P_ERR	Command Frame received with a parity error	0	No	No	R/W

るWinic 上海艾汋电子技术股份有限公司 shanghai awinic technology co., Itd.

AW12024TQNR

Aug. 2022 V1.2

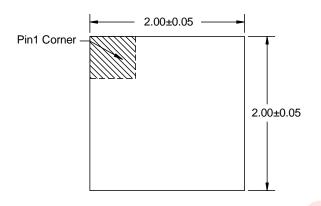

5	CMD_LEN_ERR	Command Sequence received with an incorrect length	0	No	No	R/W	
4	ADDR_FR_P_ERR	Address Frame received with a parity error	0	No	No	R/W	
3	DATA_FR_P_ERR	Data Frame received with a parity error	0	No	No	R/W	
2	RD_INVLD_ADDR	Read Command Sequence received with an invalid address	0	No	No	R/W	
1	WR_INVLD_ADDR	Write Command Sequence received with an invalid address	0	No	No	R/W	
0	BID_GID_ERR	Read Command Sequence received with a BSID or GSID	0	No	No	R/W	
	Note: Reading this register resets this register.						

REGISTER 0x002D : EXT_TRIG_MASK

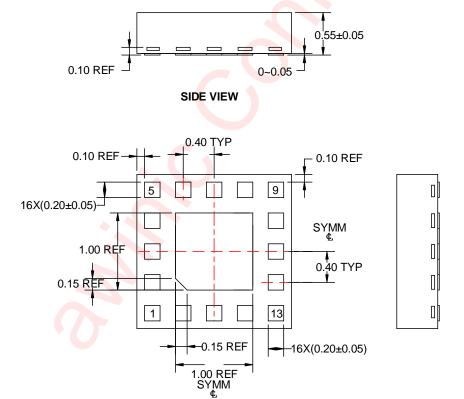
Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	TriggerMask[10:3]	Setting bit TriggerMask[N] disables Trigger[N] If using an Extended Write to update both TriggerMask and Trigger, than TriggerMask[N] updates before Trigger[N] is processed Note: When Trigger[N] is disabled, writing to a register associated with Trigger[N] sends data directly to that register. If a register is associated with multiple triggers, then all associated triggers must be disabled to allow direct writes to the associated register.	0x00	No	No	R/W

REGISTER 0x002E : EXT_TRIG

Bit(s)	Field Name	Description	Reset	B/G	Trig	R/W
7:0	Trigger[10:3]	Setting bit Trigger[N] loads Trigger[N]'s associated registers Note: When Trigger[N] is enabled, writing to a register associated with Trigger[N] sends data to that register's shadow. Setting the Trigger[N] bit loads data from shadow. All triggers are processed immediately and simultaneously and then cleared. Trigger[10 - 3] will always read as 0.	0x00	B/G	No	W



Truth Table


DEOUT4	DECUTA	Reg_00	0 Reg_01					
RFOUT1	RFOUT2	0	5	4	3	2	1	0
Isolation	Isolation	0	0	0	0	0	0	0
RFIN1	Isolation	0	0	0	0	0	0	1
RFIN2	Isolation	0	0	0	0	0	1	0
RFIN3	Isolation	0	0	0	0	1	0	0
RFIN4	Isolation	0	0	0	1	0	0	0
RFIN1	RFIN2	0	0	1	0	0	1	1
RFIN1	RFIN3	0	0	1	0	1	0	1
RFIN2	RFIN3	0	0	1	0	1	1	0
RFIN1	RFIN4	0	0	1	1	0	0	1
RFIN2	RFIN4	0	0	1	1	0	1	0
RFIN3	RFIN4	0	0	1	1	1	0	0
RFIN2	RFIN1	0	1	0	0	0	1	1
RFIN3	RFIN1	0	1	0	0	1	0	1
RFIN3	RFIN2	0	1	0	0	1	1	0
RFIN4	RFIN1	0	1	0	1	0	0	1
RFIN4	RFIN2	0	1	0	1	0	1	0
RFIN4	RFIN3	0	1	0	1	1	0	0
Isolation	RFIN1	0	1	1	0	0	0	1
Isolation	RFIN2	0	1	1	0	0	1	0
Isolation	RFIN3	0	1	1	0	1	0	0
Isolation	RFIN4	0	1	1	1	0	0	0
Isolation	Isolation	1	0	0	0	0	0	0
Isolation	RFIN1	1	0	0	0	0	0	1
Isolation	RFIN2	1	0	0	0	0	1	0
Isolation	RFIN3	1	0	0	0	1	0	0
Isolation	RFIN4	1	0	0	1	0	0	0
RFIN2	RFIN1	1	0	1	0	0	1	1
RFIN3	RFIN1	1	0	1	0	1	0	1
RFIN3	RFIN2	1	0	1	0	1	1	0
RFIN4	RFIN1	1	0	1	1	0	0	1
RFIN4	RFIN2	1	0	1	1	0	1	0
RFIN4	RFIN3	1	0	1	1	1	0	0
RFIN1	RFIN2	1	1	0	0	0	1	1
RFIN1	RFIN3	1	1	0	0	1	0	1
RFIN2	RFIN3	1	1	0	0	1	1	0
RFIN1	RFIN4	1	1	0	1	0	0	1
RFIN2	RFIN4	1	1	0	1	0	1	0
RFIN3	RFIN4	1	1	0	1	1	0	0
RFIN1	Isolation	1	1	1	0	0	0	1
RFIN2	Isolation	1	1	1	0	0	1	0
RFIN3	Isolation	1	1	1	0	1	0	0
RFIN4	Isolation	1	1	1	1	0	0	0

Package Description

TOP VIEW

Unit: mm

SIDE VIEW

Figure 15 Package Outline

BOTTOM VIEW

Land Pattern Data

awinic

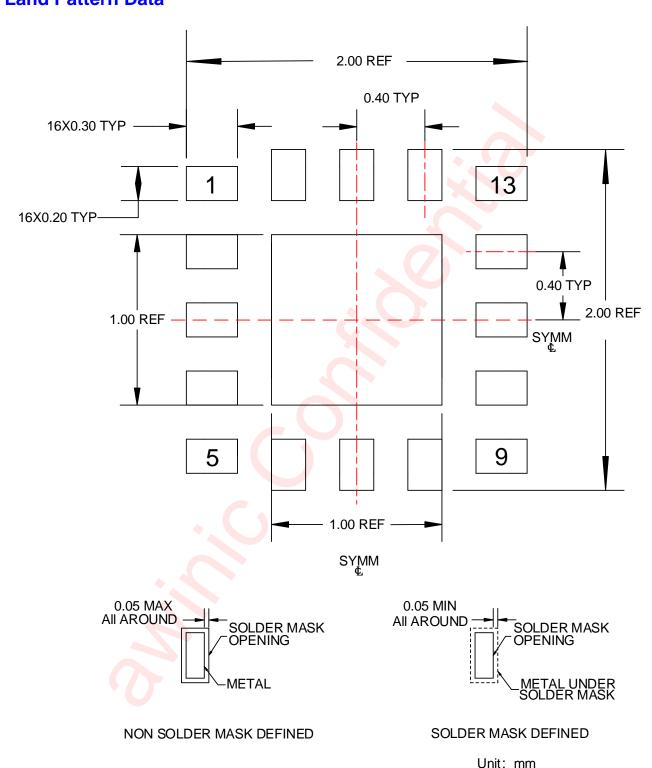
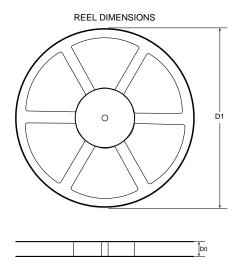
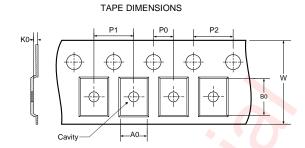
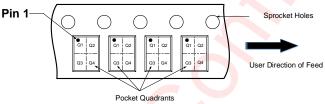




Figure 16 Land Pattern Data

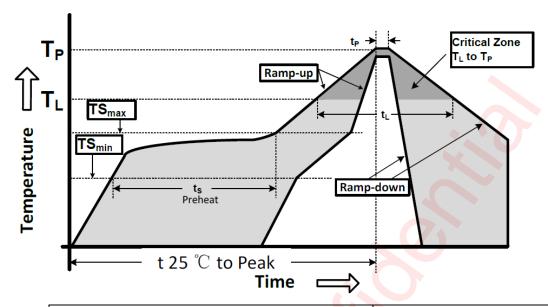

Tape And Reel Information

- A0: Dimension designed to accommodate the component width B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

DIMENSIONS AND PIN1 ORIENTATION


D1	D0	A0	B0	K0	P0	P1	P2	W	Pin1 Quadrant	
(mm)										
178	8.4	2.25	2.25	0.75	2	4	4	8	Q1	

All dimensions are nominal

Figure 17 Tape and Reel

22

REFLOW

Reflow Note	Spec			
Ramp-up rate(TSmax to Tp)	3°C/second max.			
Preheat temperature (Tsmin to Tsmax)	150°C to 200°C			
Preheat time (ts)	60 – 180 seconds			
Time above TL , 217°C(tL)	60 – 150 seconds			
Peak temperature (Tp)	260℃			
Time within 5℃ of peak temperature(tp)	20 – 40 seconds			
Ramp-down rate	6°C/second max.			
Time 25°C to peak temperature	8 minutes max.			

备注:可过 reflow 次数≥3

Revision History

Version	Date	Change Record
V1.0	Oct. 2021	Officially Released
V1.1	Aug.2022	Update Delivery Form
V1.2	Aug.2022	Update Supply Voltage VIO for MIPI

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.